Some applications of model theory in Banach space theory
نویسندگان
چکیده
منابع مشابه
Weak * Sequential Closures in Banach Space Theory and Their Applications
Let X be a (real or complex) Banach space, its dual Banach space will be denoted by X *. We use standard notation and terminology of Banach space theory, see J.Lindenstrauss and L.Tzafriri [LT]. By a subspace we mean a linear, but not necessarily closed, subspace. We also assume some knowledge of general topology and ordinal numbers, see P.S.Aleksandrov[A]. Definition 1.1. Let A be a subset of ...
متن کاملCompact spaces and their applications in Banach space theory
2. Summary of the thesis 9 2.1. Di erentiability of convex functions and the respective classes of Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2. Summary of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3. Decompositions of nonseparable Banach spaces . . . . . . . . . . . . . . . 23 2.4. Summary of ...
متن کاملNon-smooth Analysis, Optimisation Theory and Banach Space Theory
The questions listed here do not necessarily represent the most significant problems from the areas of Non-smooth Analysis, Optimisation theory and Banach space theory, but rather, they represent a selection of problems that are of interest to the authors. 1. Weak Asplund spaces Let X be a Banach space. We say that a function φ : X → R is Gâteaux differentiable at x ∈ X if there exists a contin...
متن کاملFractal Space-time Theory and Some Applications in Advanced Materials
Since the last twenty years an increasing interest on the fractal approach on microphysics has been observed [1-9]. The Theory of fractal space-time or the Scale Relativity Theory (SRT) [1] extends Einstein’s principle of relativity to scale transformation of resolution. The introduction of non-differentiable trajectories in physics dates back to the pioneering works of Feynman, who demonstrate...
متن کاملCoorbit Space Theory for Quasi-Banach Spaces
We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Mathematical Logic
سال: 1976
ISSN: 0003-4843
DOI: 10.1016/0003-4843(76)90006-1